RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products)

Dr. Jochen Kerkmann Training Officer EUMETSAT

Multi-channel GEO satellites today

Him-08 (140.7 E) GOES-16 (89.5 W) Met-10 (0) Met-08 (41.5 E)

FD____AIL_GQES-16_UIL_DISK_IMAGES(AILBARDS)_3_2_GOLOR(RGB}_IMAGE950191730312107120107 T=80(MSG3)_3-5mkmARITEDLEDISK_IMAGERADATA CHANNELS1-14 (AILBARDS)_3_2_1_80187 (RGB)_IMAGE 2817-83-21 87:15

20 March 2017, First Global Airmass RGB Composite

Credits: HP Roesli

How to display multispectral data?

Why do we need RGB products, when we have derived (cloud) products?

Multispectral view of tomatoes & clouds

EUMETSAT

Credits: Prof. Danny Rosenfeld, Jerusalem (HUJ)

MODIS Airborne Simulator-L1B 02-954-06 26 Jul 2002 18:44 GMT

Caribbean Sea

Flight level 20 km Resolution 50 m at NADIR Swath ± 45°, With=37 km

Red: 0.63 μm

Green: 2.06 μm

Blue: 2.11/2.21 µm

Credits: Prof. Danny Rosenfeld, Jerusalem (HUJ)

Cloud Properties seen in Day Microphysics RGB

Cirrus with large

crystals

Mixed phase

layer clouds

Nimbus

Dissipating Nimbus "warm" large ice particles

Layer clouds of large water drops

snow

surface

now in the air downhill the stau cloud after its supercooled cloud drops evaporated

8 October 2003, 12:00 UTC

Source: D. Rosenfeld

Comparison 1: RGBs vs Cloud Type Product

Texture gets lost, no cloud phase info

Day Microphysics RGB

Met-8, 21 March 2007, 12:00 UTG EUMETSAT

Comparison 2: RGBs + Ash Product

Best use: RGBs + Derived Product Derived product (ash mask) overlaid on Ash RGB

15 April 2010, 09:00-15:00 UTC

Source: M. Pavolonis

Main Improvements from multi-channel (GEO) Imagers

New Generation Improvements: Clouds at Night

AHI IR10.4 Channel

AHI Night Micro RGB

New Generation Improvements: Vegetation

MFG VIS Channel

MSG Natural Colours RGB

New Generation Improvements: Cloud / Snow Discrimination

MFG VIS Channel

MSG RGB NIR1.6, HRV/HRETSAT

New Generation Improvements: Haze, Dust, Ash, Smoke

MFG IR Channel

New Generation Improvements: Cloud Particle Size

MFG IR Channel

New Generation Improvements: Thin Clouds

GOES-16 Nat. Colour RGB (non-operational data)

GOES-16 Dust RGB

New Generation Improvements: Cloud Classification

GOES-16 Cloud Type RGB (non-operational data) **GOES-16 Dust RGB**

New Generation Improvements: Moisture Boundaries

Diurnal development of the sea-breeze front in Yemen

New Generation Improvements: Wind Shear Observation

Ash RGB Himawari-8 data (2km resolution)

3.7 micron NIR MTSAT data (4km resolution)

11 micron IR MTSAT data (4km resolution)

Raung Plume, Java (10th July 2015)

GUIDELINES FOR CREATING RGBs

Rules for Creating "Good" RGB Products

Select three channels or channel differences that represent three different physical properties !!!

Example: MSG Window Channels

Channel	Main Cloud Physical Properties (clouds, NADIR viewing)
01 (VIS 0.6)	optical thickness, amount of cloud water and ice
02 (VIS 0.8)	optical thickness, amount of cloud water and ice
03 (NIR 1.6)	optical thickness, particle size & shape, phase
04 (MIR 3.9)	Day-time: top temperature, particle size & shape, phase Night-time: top temperature (very noisy below -50°C)
07 (IR 8.7)	top temperature
09 (IR 10.8)	top temperature
10 (IR 12.0)	top temperature

Not Recommended RGB IR8.7, IR10.8, IR12.0

Recommended RGB VIS0.8, IR3.9r, IR10.8

RGB PRODUCTS FOR OPERATIONAL FORECASTING

Most important RGBs (for Operational Forecasting)

24-h Microphysics (Dust) RGB

Airmass RGB

28 January 2013, 12:00 UTC

Jet (polar)

Jet (subtropical)

PV Anomaly

Him-08, 17 October 2017, 12:00 UTC

Him-08, 17 October 2017, 12:00 UTC

Example: Deformation Zone

Example: Deformation Zone

COL

Example: Deformation Zone Ash cloud from Iceland as tracer

Source: HP. Roesli

67

AIRM - 2010-05-08 06:00UTC Split-window ash - 2010-05-08 06:00UTC

Example: Two PV anomalies merge over Europe (Fujiwhara effect)

Met-10, 5-6 April 2017

Example: Low Clouds

Meteosat-8 - 24-hour Cloud Microphysics RGB - 20070501140

Meteosat-9 - 24-hour Cloud Microphysics RGB - 20070501140

Comparison Met-8 vs Met-9

1 May 2007, 14:00 UTC

Source: HP. Roesli

Example: Dust crosses the Atlantic Ocean

m10 DUST - 2014-06-22 08:00UTC

Source: HP. Roesli

22-25 June 2014

Example: Volcanic Ash (Etna, Italy)

Example: Thin Ice Clouds (Lee Clouds)

MSG-1, 12 November 2006, 23:00 UTC

Example: Cloud Phase

-

Water cloud

Met-8, 16 Aug 2006, 04:00 UTC

OTHER RGB PRODUCTS

Day Microphysics RGB, 19 January 2017, Example of polluted airmasses

Convection RGB, ... dust changes cloud microphysics

particles (IR3.9r > 10%)

Day Microphysics

Convective Storms

IMETSAT

Met-8, 22 February 2007, 12:00 UTC

Night Microphysics RGB, 19 January 2017, snow detection at night

Snow

Stratus

Snow

Mid-level water clouds

17 January 2006, 16:00 UTC

Convection RGB, small ice particles in severe thunderstorms

Multispectral View of Convective Storms

HRV

RGB Convective Storms

Met-8, 29 June 2006

New Developments Presented at 2017 RGB workshop

Airmass RGB product – normal vs tropical version

(Typhoon In-fa, 24 November 2015, 04UTC)

image courtesy EUMETSAT

Standard

Tropical

Tropical Airmass RGB (tuned for OTs)

2 km / 2.5 minutes

Tuning of AHI Dust RGB (for dust, cloud phase, moisture)

Red: IR12.4 – IR10.4, Green: IR11.2 – IR8.6, Blue: IR10.4 (uses 4 (not 3) IR channels)

A: thick dust B: thin dust C thin Cirrus D: Thick Cirrus E: Mid clouds F: Low clouds G: thin dust

EUMETSAT

Credits: D. Gencic

Him-08 Tuned Dust RGB

Convective outflow boundary

India

2017-05-17 06:00UTC

Him-08 Ash RGB (source: CIRA)

Kamchatka

Volcanic plume (green = SO2)

"kinks" in Contrails

25 March 2017, 09:30 UTC

Him-08 Ash RGB (source: CIRA)

Animation of volcanic plume and contrails

Him-08 Tuned Dust RGB

dry

Australia thin ice

water

water

ice

ice

RGB Composite

New Him-08 RGB: Cloud Phase RGB

Him-08, AHI, Cloud Phase RGB (05-06-02) RGB Composite, NIR1.6-NIR2.3-VIS0.5

Animation Cloud Phase RGB, Australia

GOES-16 Cloud Phase RGB (non-operational data)

Cloud Phase RGB

Convection RGB

Supercell, Texas, 16 May 2017, 21:27 – 23:02 UTC (5 min intervals)

Fires in Australia, AHI, New Fire Temperature RGB 16-17 October 2017

Credits: CIRA

Him-08 True Colour RGB (source: CIRA)

A wall of pollution crosses the Sea of Japan 27-28 May 2017

0002 HIMAWARI-8 2 27 MAY 17147 224000 01501 04101 01.00

Him-08 True Colour RGB (source: CIRA)

Spiegel Online: Smog alarm in India 7 November 2017, 03:20 UTC

Him-08 True Colour RGB (source: CIRA)

Spiegel Online: Smog alarm in India

Him-08 Dust RGB (source: ePort, EUMeTrain)

High level smoke

Lake Baikal

23 June 2017, 12:00 UTC

MODIS image (NASA)

Him-08 Dust RGB (source: ePort, EUMeTrain)

Russia (Siberia)

Very cold land surfaces

27 January 20176, 06:00 UTC

Him-08, Convection RGB (source: JMA)

Him-08, Convection RGB (source: ePort, EUMeTrain)

Australia

High Supercooled Clouds

28 September 2017, 00:00 UTC

Impact of viewing angle on dust detection

Source: ePort Pro (EUMeTrain)

Met-08

Met-10

4 July 2017, 06:00 UTC

Dust (and smoke) often better detected at high viewing angles (NADIR view is not always the best one)

Impact of viewing angle on fog detection

Source: ePort Pro (EUMeTrain)

Limb cooling in Airmass RGB

Met-08

Him-08

5 September 2016, 12:00 UTC

Bluish limb area In Met-08 on eastern side In Him-08 on western side

Summary (Dust RGB Animation, source: CIRA)

High winds produce massive dust storm along China-Mongolia border

- 3 May 2017 -